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Problem Set #12

Exercise 1 p 84
Show that C[X, Y ]/(XY −X), C[X, Y ]/(XY −1)., C[X, Y ]/(X2−Y 3), C[X, Y ]/(Y 2−
X2 − X3) are one-dimensional noetherian rings. Which ones are integral domains?
Describe their normalizations.
Hint: For instance, in the last example, put t = X/Y and show that the homomorphism
C[X, Y ] → C[t], X 7→ t2 − 1, Y 7→ t(t2 − 1), has kernel (Y 2 − X2 − X3) has kernel
(Y 2 −X2 −X3).

Solution: The quotient ring C[X,Y ]
I

is Noetherian as quotient of the Noetherian domain

C[X, Y ], for any ideal I. When I is a prime ideal, C[X,Y ]
I

is of dimension 1.

1. C[X,Y ]
(XY−X)

is not a domain. Indeed, X(Y − 1) ⊆ (XY − Y ) but X 6⊂ (XY −X) and

(Y − 1) 6⊂ (XY −X). Thus (XY − Y ) is not a prime ideal, and so the quotient
ring is not a domain. Thus we cannot consider the normalization. The quotient
ring C[X,Y ]

(XY−X)
is Noetherian as quotient of the Noetherian domain C[X, Y ]. Finally,

C[X,Y ]
(XY−X)

has Krull dimension 1. Since we get that the maximal ideal are of the

(x− a, y − b) a 6= 0 and b 6= 1, and (x− a) ⊆ (x− a, y − b).

2. We will construct a bijective ring homomorphism from this quotient ring to C[u, 1
u
].

Since C[u, u−1] = C[u] localized at the prime ideal (u), this is a DVR (since C[u]
is a PID). We construct our map:

φ : C[X, Y ]→ C[u,
1

u
]

φ(X) = u;φ(Y ) =
1

u

This homomorphism is surjective, so if we quotient the base space by the kernel
of this map, we will get an isomorphism. The kernel of this map is precisely the
ideal XY − 1. Thus:

C[X, Y ]

XY − 1
∼= C[u,

1

u
]

This is a DVR, so we are done.

3. We prove that we have an isomorphism

Q[X, Y ]/(X2 − Y 3) ' Q[t2, t3]
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and conclude, since Q[T 2, T 3] being a integral domain implies (X2 − Y 3) will be
a prime ideal.
For this, consider the morphism:

φ : Q[X, Y ] → Q[T 2, T 3]
X 7→ T 3

Y 7→ T 2

It is clearly a surjective morphism and (X2 − Y 3) ⊆ ker(φ).
Take an element f(X, Y ) ∈ Ker(φ), i.e. as a polynomial in variable X and
coefficients coming from k[Y ]. If you divide f(X, Y ) by (X2 − Y 3), we will get

f(X, Y ) = g(X, Y )(X3 − Y 2) + r(X, Y )

where r(X, Y ) ∈ k[Y ][X] and degree of r(X, Y ) is less than two. But then
f(T 3, T 2) = 0 implies r(T 3, T 2) = 0. But if r(X, Y ) is not zero, r(T 3, T 2) cannot
be zero because r(X, Y ) is a polynomial of degree less two in variable X with co-
efficients in K[Y ]. So that r(T 3, T 2) = 0 and f(X, Y ) ∈ ker(φ).
As a consequence it is an integral domain but not integrally closed t = x̄y is in
the fraction field and integral (satisfies z2− t2 = 0 in C[t2, t3] ) but not in C[t]. So
the normalization in C[t] obtained by adjoining t = x̄/ȳ (being a UFD we know it
is integrally closed.)

4. We define our map:

φ : C[X, Y ]→ C[u2 − 1, u(u2 − 1)]

φ(X) = u2 − 1;φ(Y ) = u(u2 − 1)

This homomorphism is surjective and the kernel is precisely generated by the ideal
(Y 2−X2−X3). Now, t = x̄/ȳ is integral over C[t2−1, t(t2−1)], z2−(t2−1)−1 = 0
in C[t2−1, t(t2−1)][z]) but not it in not in C[t2−1, t(t2−1)]. The normalization
is obtained adkoining t since we obtain a UFD C[t].

Exercise 2 p 84
Let a and b be positive integers that are not perfect squares. Show that the fundamental
unit of the order A = Z + Z

√
a of the field Q(

√
a) is also the fundamental unit of the

order O = Z + Z
√
a+ Z

√
−b+ Z

√
a
√
−b in the field K = Q(

√
a,
√
b).

Solution:
By Theorem 12.12 we know that O∗K/O is finite, and rank(O∗) = rank(O∗K) = r +
s − 1 = 4/2 − 1 = 1 since K has 4 complex embeddings. Clearly A∗ ⊆ O∗ and
1 = rank(A∗) = rank(O∗). Using the notation of p39, we denote Γ1 = λ(A∗) and
Γ2 = λ(O∗), they are free module of same rank 1. Sso that Γ2/Γ1 is of finite rank r
and rΓ2 ⊆ Γ1 ⊆ Γ2. As a consequence r ∈ N is a unit, that implies that r = 1 and then
Γ1 = Γ2.

Exercise 3 p 84
Let K be a number field of degree n = [K : Q]. A complete module of K is a subgroup
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of the form M = Zα1 + ...Zαn, where α1, ..., αn are linearly independent elements of K.
Show that the ring of multipliers

O = {α ∈ K|αM ⊆M}

is an order in K, but in general not the maximal order.

Solution:
Easily, we can check that O is a ring. Moreover, for any 0 6= m ∈ M , we have that
O ⊆ m−1M , let a ∈ O, a = am−1m ⊆ m−1aM ⊆ m−1M . Then, M ⊆ O ⊆ m−1M .
So, the O is a free module of rank(O) = rank(M) = n. Moreover, for any α ∈ M ,
Z[α] is a finitely generated module as a consequence α is integral over Z. That proves
that O is an order.
For any b ∈ O, se have the relations

bθj =
∑
i=1

ci,jθi

ci,j ∈ A so we have
∑m

i=1(δi,jb− ci,j)i,j∈[1,m]; it is a matrix in Mm(A) let Adj(T ) be its
adjoint and Θ := (θ1, ..., θm)t then det(T )Θ = Adj(T )TΘ = 0. This implies det(T )M =
0.
Since det(T ) = f(b) for some monic f ∈ A[x]. It follows that f(b) = 0, so b is integral
over R. So that O ⊆ OK.
Now, consider K = Q(

√
5), then OK = Z + 1+

√
5

2
Z, now if M = Z +

√
5Z, 1

2
/∈ O so

that O 6= OK.
Exercise 4 p 84
Determine the ring of multiplier O of the complete module Z + Z

√
2 in Q(

√
2). Show

ε = 1 +
√

2 is a fundamental unit of O. Determine all integer solutions of ”Pell’s
equation”

x2 − 2y2 = 7

Hint: N(x+ y
√

2) = x2 − 2y2, N(3 +
√

2) = N(5 + 3
√

2) = 7.
Solution:
Z + Z

√
2 is the maximal order of Q(

√
2) so that O = Z + Z

√
2 and we have seen

that ε = 1 +
√

2 is a fundamental unit of O. Moreover Z + Z
√

2 is a UFD and
7 = (3 +

√
2)(3 −

√
2) = (5 + 3

√
2)(5 − 3

√
2). We notice that 3+

√
2

3−
√
2

= 11+6
√
2

7
/∈ Z[
√

2]

and then 3 +
√

2 and 3−
√

2 are not associated one to the other. we see that 5+3
√
2

3−
√
2

=
21+14

√
2

7
= 3 + 2

√
2 = (1 +

√
2)2 ∈ Z[

√
2]∗. So that 5 + 3

√
2 and 3−

√
2 are associated

and 5− 3
√

2 and 3 +
√

2 are associated. Now, let (x, y) an arbitrary solution of the Pell
equation then N(x+ y

√
2) = 7 = (x+ y

√
2)(x− y

√
2) so the (x+ y

√
2) is associated to

3 +
√

2 or to 5 + 3
√

2.

Exercise 5 p 84:
In a one-dimensional noetherian integral domain the regular prime ideals 6= 0 are pre-
cisely the invertible prime ideals.
Solution:
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Suppose first that p is regular then Ap is a dvr (principal domain with one only prime
ideal) and pAp is principal and then p is invertible by the proposition 12.4.
Now, suppose that p is invertible, again by the proposition 12.4, pOp is a principal ideal
so the ring Op is a dvr so in particler a PID and UFD so that Op is integrally closed
and p is regular.

1

1(?) = easy , (??)= medium, (???)= challenge
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